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INTRODUCTION

Let E be a real Banach space, and T a nonexpansive mapping of E into
itself. For xEE, an asymptotic center of the orbit {TiX}~O (with respect
to E) is an element z of E such that ITm; II T;x - zll ~ITm; II Tix - yll for all
YEE.

Brezis and Browder [4] studied an iteration to obtain the asmptotic
center of an orbit of T as a nonlinear ergodic theorem. That is, the
asymptotic center is approximated in the weak topology of E by the unique
minimum points of appropriate convex functions In' n = 1, 2, .... However,
it is an implicit iteration. On the other hand, many authors studied explicit
iterations to obtain fixed points of nonexpansive mappings; for example,
double iterations, mean ergodic theorems, mean value iterations, and so
on; see [1, 5, 6, 11, 13, 14] and the references mentioned there. However,
it seems that explicit iterations to obtain asymptotic centers have never
been carried out in Banach spaces (cf. [12]).

In this paper we study an explicit iteration scheme converging weakly to
the asymptotic center of an orbit of a nonexpansive mapping T (with fixed
points) in a uniformly convex and uniformly smooth Banach space with a
weakly continuous duality mapping. In particular, we obtain an iteration
scheme which is calculated from finite number of iterates {x, Tx, ... , Tnx}
at each time.
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Our main result is Theorem 2. That is, we find a sequence {Yn} converg
ing to the asymptotic center of a given orbit {Tx} of T, where Yn
approximates the minimum point of fn" This result extends the main result
of [4J partially. Such a Yn is constructed explicitly from {x, Tx, ... , r x} by
using Theorem 1 and Remark 1 in this paper. This iteration is a kind of
gradient method, which is adequate for the condition of Theorem 2; confer
[7J for the gradient method for C 1 functionals. Our proofs are simple on
account of using Banach limits.

1. PRELIMINARIES

Let B(N) be the Banach space of all bounded real valued functions
defined on N = {O, 1,2, ... } with the supremum norm. An element p. of the
dual space B(N)* of B(N) is said to be a mean on N if p.(I)= 1 = 11p.11.
Furthermore a mean p. is said to be an invariant mean (or Banach limit)
if p. satisfies that p.(rnf) = p.(f) for all n E Nand f E B(N), where
rnf(m) =f(m + n) for m, n E N.

Next, let A be'a (multivalued) mapping from a real Banach space Einto
E*. A is said to be monotone if A satisfies that <YI- Yz, X1 -X2> ~O for
all x;ED(A) and Y;EAx; U= 1, 2), where D(A) denotes the domain of A.
A monotone mapping A is said to be maximal if A has no monotone exten
sion. Let f be a proper convex lower semi-continuous function of E into
( - IX) , 00]. Then we define the subdifferential of of f by

of(x) = {x*EE*:f(y)-f(x)~ <x*, y-x> for all YEE}

for all x E E. It is well known that of is a maximal monotone operator from
E into E*. Let h, called a gauge function, be a strictly increasing and con
tinuous function from [0, IX)) to [0, 00) such that h(O) =°and h(t) ~ IX) as
t ~ IX). Then we denote by Jh the duality mapping with gauge function h
defined by

Jh(x) = {x* E E*: <x*, x> = Ilxll . Ilx* II, Ilx* II = h( Ilxll)} for x E E.

J h is known to be the subdifferential of the mapping cP( II ·11), where
cP(t) = g h(s) ds, t ~ 0. Furthermore suppose that E* is uniformly convex.
Then J h is single valued and uniformly continuous on bounded subsets of
E. Therefore for a bounded subset D of E and E > 0, there exists J > Osuch
that

for all u, v E D: Ilu- vii ~ J. (1.1 )
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Then we define a positive number J D(B) = sup{J > 0: J satisfies (1.1)}.
Since J D(B) --+ 0 as B--+ 0, we also define J D(0) = O.

Finally, let {Yi} be a bounded sequence in E. For a mean fJ. on N we
define fl'(x) = JcP( II Yi - xii) dfJ.(i) for all x E E, where the right term denotes
the value of fJ. at the function t/!(i)=cP(IIYi-xll), iEN. Then, as in [4],
(1 )fl' is a lower semi-continuous convex function of E into [0, (0); (2)f/,
has a unique minimum point YI'EE (i.e., J;'(YI')=min{fl'(x):xEE});
(3) (afl'(x),z)=JUh(Yi-x),z)dfJ.(i) for all x,zEE; (4)fl'(z)--+cl) as
Ilzll--+ 00. Similarly we define g(x)=lim SUPi IIYi-xll for all xEE. Then we
say y E E is an asymptotic center of {y i} (with respect to E) when y is a
minimum point of g in E (ie., g(Y) = min {g(x): x E E}). If E is uniformly
convex, then there exists a unique asymptotic center for each bounded
sequence in E (cf. [9]).

2. MAIN RESULTS

Throughout this section we assume that E is a real uniformly convex and
uniformly smooth Banach space. Let {y,} be a bounded sequence in E, fJ.
a mean on N, and h a gauge function.

First we consider the following explicit iteration scheme (confer, for
example, [7]):

xoEE,

Xn+ 1 = Xn- )'nJk* af/l(Xn), n=O, 1,2, ... ,
(2.1 )

where An> 0 and r: is the single valued duality mapping of E* into E with
gauge function k = h -1.

THEOREM 1. Let D be a bounded subset of E. Assume that {xn} satisfies
(2.1), Yi-XnED for i, n = 0, 1, 2, ..., and

n=O,I, ... (2.2)

for some ex> O. Then Xn converges weakly to Y/l as n --+ 00, where YI' is a
unique minimum point offl' defined under preliminaries.

Proof Since fl' is lower semi-continuous and convex,

fl'(x n+ I) - fl'(xn) ,,:; (af/,(xn+ 1)' Xn+ I - Xn>
= -)'n<afl'(xn+ d, Jk*afl'(xn»,
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On the other hand, using (2.2),

Illaf/l(xn)11 .k( Ilaf/l(xn)II )- <af/l(xn+ I), N af,,(xn)>I

= I<af,,(x,J - af,,(xn+d, N8f,,(xn)>1

:;;:; k( Ilaf,,(xn)II)· Ilaf,,(x,J - af,,(xn+ t )11

:;;:; k( Ilar/l(xn)ll) . sup IIJ,,(Yi - xn)- J"(Yi - Xn+ dll,
:;;:; k( Ilafl,(xn)ll)· Ilafl,(xn)ll/2.

Therefore we obtain that
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for every n = 0, 1,2, .... Thus {f/l(xn)} is a non-increasing sequence of non
negative numbers and converges to some c ~ O. Then, since An . k( Ilaf/l(xn)ll) .
II af,,(xn)ll :;;:; 2(J;,(xn)- f/l(xn+ d), )'n .k( II arl,(xn)ll) . II af/l(xn)ll converges to 0
as n -+ 00.

Now we prove af/l(xn) -+ 0 as n -+ 00 by contradiction. Assume that there
exist M>O and a subsequence {xn(m)} of {xn} such that IlaJ;,(xn(m»)11 ~M
for all m ~ O. Then we have

An(m)' k(llar,,(xn(m»)II) ·llaf/l(xn(mj)11 ~ M ·llxn(mJ+ I -xn(m)11

~ M· rJ.. bD( Ilaf/l(xn(m))11/2)

~ M· rJ.. bD (M/2) > O.

Since )'n(m)·k(llaJ;,(xn(m»)II)·llaf/l(xn(m»)II-+O as m-+oo, this is a contra
diction.

Lastly we show that xn converges weakly to Y /l as n -+ 00. Since {xn} is
bounded, taking the subsequence if necessary, we may assume that X n con
verges weakly to wand af/l(xn) -+ 0 as n -+ 00. Then, since af/l is a maximal
monotone operator from E into E*, we obtain 0 E af/l(w). The uniqueness
of the minimum point off l , yields w = Y/l' Therefore the conclusion follows.

Let T be a nonexpansive mapping of E into itself with fixed points. For
the remainder of this paper, we consider {Yi} = {Tix} for a fixed x E E.

Remark 1. For any X oE E, there does exist a bounded subset D of
E and a sequence {x n } satisfying the whole condition of Theorem 1
for {Yi} = {Tix}. Indeed, we have f/l(x o):;;:; SUPi cP(IITix - xoll):;;:;
sup; cP(II Tx - xii + Ilx - xoll):;;:; cP( Ilx - xii + Ilx - xoll) =r < 00, where x is
a fixed point of T. Sincef/l(z)-+oo as Ilzll-+oo, Dt=f;l(-oo,r] is
bounded. Therefore there exists R>O such that D] u {rX};~OcBR[O],

where BR[O] denotes the closed ball with center 0 and radius R. Here
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let R' = max{R, k(h(2R)/2)}, D == B3R{OJ, and suppose that Xn E D 1.
Select An>O so that Ilx"+1-x"ll=min{R',oD(llafl'(xn)ll/2)}. Then
X,,+lEB2R,[OJ, Tix-x,,+jED for i=O, 1,2, ..., and (2.3) holds. Therefore,
we havefl'(x,,+d~fl'(x,,)~rand x,,+,ED j. Since xoED j, we obtain a
sequence {x,,} ;;C~o in D inductively. Finally we show the existence of IX>°
which satisfies (2.2). For every n=O, 1,2, ... , since OED, oD(llafl'(x,,)11/2)~

k( Ilafl'(x,,)11/2) ~ k(sup, h( II Tx - xnll )/2) ~ k(h(2R)/2) ~ R'. Therefore, (2.2)
holds for IX = 1.

Let ji be the asymptotic center of {Tx: i = 0, 1,2, ... }. Then ji is a fixed
point of T. Furthermore ji = Y I' for every Banach limit J1. Indeed, since
YI' and ji are fixed points of T, we have limsupict>(IITix-YI'II)=
Jct>( II rx - YI'll) dJ1(i) ~ Jct>( II Tix - jill) dJ1(i) = lim SUPi ct>( II Tix - jill). Then,
by the strict increasingness of ct> and the uniqueness of the asmptotic
center, we obtain YI' == ji. Using this fact, we consider iteration schemes for
finding the asymptoic center of {Tix}. Let

n = 1, 2, ..., (2.4 )

be Cesaro means on N, where 0i is a mean on N defined by o;(!) = f(i) for
all fEB(N). Then fl'.(z)=(1/n)L7,:-dct>(IITix-zll) and afl'.(z) = (l/n)
L7,:-d Jh(Tix - z) for all z E E. Fix n E N and let z" EE. Define z,,+ 1 E E as
follows. From Theorem 1 and Remark 1, there exists a sequence {x".m}~=O

which satisfies

x".o = z",

m =0,1,2, ...,

and

(2.5)

(2.6 )

as m ~ 00.

In particular, there exists M n >°such that

for all m ~ M". (2.7)

Then let

for some m ~ M n • (2.8)

This procedure yields a sequence {zn} inductively from a given initial
element Zo E E. We remark here that z", n = 1, 2, ..., is obtained explicitly
from finite numbers of Tix by (2.6). On the convergence of such Zn' we
obtain the following theorem.
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THEOREM 2. Let /In' n= 1, 2, ... , be Cesaro means. Let {zn} be a
sequence in E such that

as n ~ 00. (2.9)

If the duality mapping Jh is weakly continuous, then Zn converges weakly to
the asymptotic center y of {Tx} as n ~ 00.

Proof First we show that {zn} is bounded. If {zn} is not bounded, then
there exists a subsequence {zn(m)} of {zn} such that Ilzn(mlll ~m. Since
F(T) #- ¢J, {Tix} is bounded, say II Tixll ~ M for i = 0, 1,2, .... Now let [; >°
arbitrarily. Then, by the uniform continuity of Jh on bounded subsets of E,
we have

for i=O, 1,2, ..., when m is sufficiently large. Since Jh(rx)=(h(llrxll)/
h(llxll))Jh(x) for every r>O and O#-xEE, the above inequality implies

Ilof/lnim/zn(m») II ·llzn(mlll

~ <of/ln1m/zn(ml)' -zn(m» = f <Jh( Tix - zn(ml)' -zn(m» d/ln(m)(i)

Therefore we obtain

for sufficiently large m. Since Ilzn(m)11 ~ m, this contradicts (2.9).
So taking the subnet if necessary, we may assume that Zn converges

weakly to some WEE. Then we must only prove that W =Y . Again taking
the subnet in B(N)*, we may assume that /In(~) converges to a Banach limit
/l on N in the weak* topology of B(N)*. Then clearly we have that zn(~)

converges weakly to wand that Ilof/lnl'l(z*l)11 converges to 0. Fix °#- y E E
and define g;(i) = <Jh(Tix-zn(~»), y) and gY(i) = <Jh(Tx-w), y) for
i = 0, 1,2, .... Then, since J h is uniformly weakly continuous on bounded
subsets of E, g;(i) converges to gY(i) uniformly in i as CI. takes infinity.
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Therefore, taking ct. sufficiently large for any fixed e > 0, we may assume
that

1J1(gY) - J1n(~)(gY)1 < e,

sup; Ig~(i) - gY(i)1 < e,

and

Then we have

1J1(gY)1 :::; 1J1(gY) - J1n(~)(gY)1 + lJ1n(~)(gY) - J1n(~)(g;)1 + lJ1n(~)(g;)1

:::; e+ IIJ1n(~)11 .sup IgY(i) - g~'(i)1

+ If <Jh(rX-Zn(~))'Y) dJ1n(~)(i)1

:::;2e+ 1<8fl'n(~)(Z*))' y)1

:::; 3e.

Since e is arbitrary, we obtain J1(gY) = 0 for each 0 #- y E E. That is,
<8fl'(w), y) = 0 for each y E E. Therefore WE 8f; 1(0). Since J1 is a Banach
limit, 8f; 1(0) = Lv}, and the proof is completed.

Remark 2. The above theorem is proved for general sequences, that
satisfy (2.9), independent of special constructions of them.
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